TP 6: Méthode des rectangles

La méthode la plus simple pour approcher l'aire sous la courbe d'une fonction continue sur [a, b] est la méthode des rectangles. Elle consiste à choisir le nombre de subdivisions n de l'intervalle puis à approcher l'aire par la somme des aires des n rectangles de base $\left[k\frac{b-a}{n},(k+1)\frac{b-a}{n}\right]$ et de hauteur $f(a+k\frac{b-a}{n})$ (ou $f(a+(k+1)\frac{b-a}{n})$) avec k variant dans [0, n-1].

Cette méthode s'appuie sur le résultat mathématique suivant :

Soit f une fonction continue sur [a,b]. On définit les sommes de Riemann suivantes :

$$S_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n}) \qquad \text{et} \qquad S_n'(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a+(k+1)\frac{b-a}{n}) \left(= \frac{b-a}{n} \sum_{k=1}^{n} f(a+k\frac{b-a}{n}) \right)$$
Cces deux sommes correspondent aux sommes des aires des rectangles ci-dessus.

Alors
$$S_n(f) \xrightarrow[n \to +\infty]{} \int_a^b f(t)dt$$
 et $S'_n(f) \xrightarrow[n \to +\infty]{} \int_a^b f(t)dt$

Dès que n sera suffisamment grand, $S_n(f)$ (ou $S'_n(f)$) fournira donc une bonne valeur approchée de $\int_a^b f(t)dt$

Exercice 1: Exercice préliminaire

Ecrire une fonction somme (f, a, b, n) qui retourne la valeur de $S_n(f)$ où f est une fonction, a, b deux réels et nun entier supérieur ou égal à 1.

Ecrire également une fonction sommebis(f,a,b,n) qui renvoie la valeur de $S'_n(f)$.

Exercice 2: Pour bien comprendre la méthode des rectangles

Soit f la fonction définie sur [0,1] par $x \mapsto x^2$.

- 1. Calculer sur votre feuille la valeur de $\int_0^1 f(t)dt$.
- 2. Représenter la courbe de f sur votre feuille, et y dessiner les rectangles précédents : on dessinera les rectangles de "gauche" de $S_n(f)$ ainsi que les rectangles de "droite" de $S'_n(f)$.
- 3. Vérifier sur votre dessin : $\forall n \in \mathbb{N}^*$, $S_n(f) \leq \int_0^1 f(t)dt \leq S'_n(f)$. Quelle est la propriété sur f utilisée ? A faire en fin de séance : Démontrer mathématiquement cet encadrement.
- 4. En quoi l'encadrement de la question 3. sera intéressant lorsqu'on cherchera une valeur approchée d'une intégrale que l'on ne sait pas calculer?
- 5. A l'aide de l'exercice 1, représenter graphiquement avec python l'évolution de $(S_n(f))$ et $(S'_n(f))$ en fonction de $n \in \mathbb{N}^*$. La convergence vous semble-t-elle rapide?

Exercice 3:

Soit la fonction $f: x \mapsto 4\sqrt{1-x^2}$, définie sur [0,1].

- 1. Justifier que f est décroissante sur [0,1].
- 2. A l'aide de python, donner une valeur approchée de $\int_0^1 f(t)dt$ à 10^{-1} près. Jusqu'à quel n a-t-il fallu aller?
- 3. Reprendre la question 2. pour obtenir une valeur approchée à 10^{-2} puis 10^{-3} près. Comparer les n obtenus.
- 4. bonus : à l'aide du changement de variable $x = \cos(t)$, montrer que $\int_0^1 f(x) dx = \pi$.
- 5. pour les plus rapides uniquement : On pose pour tout $n \in \mathbb{N}^*$, $T_n(f) = \frac{S_n(f) + S'_n(f)}{2}$, où $S_n(f)$ et $S'_n(f)$ sont les sommes de Riemann définies précédemment.
 - (a) Représenter sur un même graphique les valeurs de $S_n(f)$, $S'_n(f)$ et $T_n(f)$ pour n variant de 5 à 15. Constater.
 - (b) En admettant le résultat de la question 3., pour quel entier $n, T_n(f)$ fournit-il une valeur approchée de $\int_{0}^{1} f(t)dt \ \text{à } 10^{-3} \text{ près } ?$
 - (c) Par quelle figure simple approche-t-on l'aire lorsqu'on utilise la suite $(T_n(f))$?

Exercice 4:

On définit la fonction f sur [0,2] par : pour tout $x \in [0,2]$, $f(x) = \cos(10x)$.

- 1. Représenter (avec python) sur un même graphique les valeurs de $S_n(f)$ et $S'_n(f)$ pour n variant de 10 à 50.
- 2. Constater la convergence ... même si la fonction n'est plus monotone!

Exercice 5: bonus mathématique

Le but est de démontrer la convergence des sommes de Riemann lorsque f est de classe C^1 sur [0,1].

- 1. Montrer que pour tout $n \in \mathbb{N}$, $|\int_0^1 f(t)dt S_n(f)| \le \sum_{k=0}^{n-1} \int_{k/n}^{(k+1)/n} |f(t) f(\frac{k}{n})| dt$.
- 2. Utiliser alors l'égalité des accroissements finis ainsi que la continuité de f' sur [0,1] pour conclure.