Option plus facile: exercices 1 et 2 Option plus difficile: exercices 1 et 3

Exercice 1:

indication: relire au préalable le chapitre Polynômes et notamment la section Racines.

Soit a, b, c trois réels tels que a < b < c.

Si besoin (pour ceux qui ont des difficultés), faire l'exercice avec a=0, b=1 et c=2.

On considère l'application u de $\mathbb{R}_2[X]$ dans \mathbb{R}^3 qui à tout $P \in \mathbb{R}_2[X]$ associe le triplet (P(a), P(b), P(c)).

- 1. Montrer que u est une application linéaire.
- 2. Montrer que u est injective.
- 3. Dans cette question uniquement, on suppose que a=0, b=1 et c=2. Montrer que u est surjective.
- 4. (a) Montrer qu'il existe un unique polynôme $A \in \mathbb{R}_2[X]$, que l'on explicitera, tel que A(a) = 1, A(b) = 0, A(c) = 0(on pourra raisonner par analyse et synthèse, sans passer par un système).
 - (b) Donner sans justification l'expression des deux polynômes B et C de $\mathbb{R}_2[X]$ tels que : B(a) = 0 = B(c) et B(b) = 1C(a) = C(b) = 0 et C(c) = 1. et
- 5. (a) Montrer que (A, B, C) est une famille libre de $\mathbb{R}_2[X]$ (soyez malins!). On admet que cette famille est une base de $\mathbb{R}_2[X]$ (car elle a le "bon nombre" de vecteurs ... cf chap suivant)
 - (b) Soit P un polynôme de $\mathbb{R}_2[X]$: vu le 5. (a), il existe un unique triplet (α, β, γ) de réels tel que $P(X) = \alpha A(X) + \beta B(X) + \gamma C(X)$. Calculer α, β, γ en fonction de P.

Exercice 2:

Une urne contient une boule blanche et une boule noire, indiscernables au toucher. On y prélève une boule, on note sa couleur, et on la remet dans l'urne avec c boules de la couleur de la boule tirée. On répète cette épreuve, on réalise ainsi une succession de n tirages $(n \ge 1)$.

Etude du cas c=0

On effectue donc ici n tirages avec remise de la boule dans l'urne. On note X la variable aléatoire réelle égale au nombre de boules blanches obtenues au cours des n tirages et Y la variable aléatoire réelle définie par :

Y = k si l'on obtient une boule blanche pour la première fois au k^{eme} tirage.

Y = 0 si les n boules tirées sont noires.

- 1. Déterminer la loi de X. Donner la valeur de E(X) et de V(X).
- 2. Déterminer la loi de Y.
- 3. Vérifier que : $\sum_{k=0}^{n} P(Y = k) = 1$ 4. Pour $x \neq 1$ et $n \in \mathbb{N}^*$, montrer que : $\sum_{k=1}^{n} kx^k = \frac{nx^{n+2} (n+1)x^{n+1} + x}{(1-x)^2}$.
- 5. En déduire E(Y).

Étude du cas c=1

On note X_n la variable aléatoire égale au nombre de boules blanches obtenues au cours des n tirages.

- 1. Donner la loi de X_1 .
- 2. Donner la loi de X_2 .
- 3. ** Montrer alors que $X_n \hookrightarrow \mathcal{U}(\llbracket 0, n \rrbracket)$ (on raisonnera par récurrence). Calculer son espérance et sa variance.

Exercice 3:

On considère un entier naturel N supérieur ou égal à 3, et on dispose d'une urne qui contient N boules numérotées de 1 à N. On y effectue des tirages successifs d'une boule avec remise de la boule tirée après chaque tirage, jusqu'à obtenir pour la première fois un numéro déjà tiré. On note alors T_N le rang aléatoire de ce dernier tirage.

- 1. Dans cette question, on suppose N=3. Déterminer la loi de T_3 et calculer son espérance et sa variance.
- 2. On revient désormais au cas général où N est supérieur ou égal à 3.
 - (a) Déterminer l'ensemble des valeurs que peut prendre T_N .
 - (b) Calculer $P(T_N = 2)$, et $P(T_N = N + 1)$. On pourra commencer par dénombrer le nombre d'issues, puis calculer la probabilité d'une issue ...
 - (c) Prouver, pour tout entier $k \in \{1, 2, \dots, N\}$, les égalités $P(T_N > k) = \frac{N!}{(N-k)!N^k} = \prod_{i=0}^{k-1} (1 \frac{i}{N})$ En déduire la loi de la variable aléatoire T_N .

 - (d) Déterminer, pour tout entier k fixé, la limite $\lim_{N\to+\infty}P(T_N>k)$. Pouvait-on prévoir ce résultat ? (e) Justifier l'égalité suivante : $E(T_N)=\sum_{k=0}^NP(T_N>k)$. En déduire : $E(T_N)=\frac{N!}{N^N}\sum_{j=0}^N\frac{N^j}{j!}$.