Devoir à la maison 2

à rendre au plus tard le lundi 17 septembre

On considère l'application f définie sur $]0, +\infty[$ par $f(x) = (x + \ln x) e^{x-1}$.

- 1. Pour tout $x \in]0; +\infty[$, calculer f'(x).
- 2. Établir: $\forall x \in]0, +\infty[$, $\ln x + \frac{1}{x} > 0$.
- 3. Déterminer la limite de f en 0 (et interpréter graphiquement), puis en $+\infty$. Déterminer alors la limite de $\frac{f(x)}{x}$ en $+\infty$: que pourrait être l'interprétation graphique?
- 4. Dresser le tableau de variations complet de f.
- 5. Montrer que l'équation f(x) = 0 admet une unique solution, que l'on notera α . Vérifier alors que $\alpha < 1$.
- 6. Tracer l'allure de C. On précisera la tangente au point d'abscisse 1.

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et, pour tout $n\in\mathbb{N},\,u_{n+1}=f\left(u_n\right)$.

- 7. Montrer que, pour tout $n \in \mathbb{N}, u_n$ existe et $u_n \geq 2$.
- 8. ** Établir, par récurrence : $\forall n \in \mathbb{N}, u_n \geq e^n$. Quelle est la limite de u_n lorsque l'entier n tend vers l'infini?

On considère enfin les fonctions $F: x \mapsto \int_1^x f(t)dt$ et $G(x) = F(x) - e^x$ définies sur $]0, +\infty[$.

- 9. Rappeler les propriétés vues en terminale sur la fonction F.
- 10. Exprimer la dérivée G' en fonction de f et de l'exponentielle.
- 11. a) Montrer que G admet une tangente horizontale en x ssi $x + \ln x = e$.
 - b) En reprenant une étude faite ci-dessus, en déduire que G admet une unique tangente horizontale.

Devoir à la maison 2

à rendre au plus tard le lundi 17 septembre

On considère l'application f définie sur $]0, +\infty[$ par $f(x) = (x + \ln x) e^{x-1}.$

- 1. Pour tout $x \in]0; +\infty[$, calculer f'(x).
- 2. Établir: $\forall x \in]0, +\infty[$, $\ln x + \frac{1}{x} > 0$.
- 3. Déterminer la limite de f en 0 (et interpréter graphiquement), puis en $+\infty$. Déterminer alors la limite de $\frac{f(x)}{x}$ en $+\infty$: que pourrait être l'interprétation graphique?
- 4. Dresser le tableau de variations complet de f.
- 5. Montrer que l'équation f(x) = 0 admet une unique solution, que l'on notera α . Vérifier alors que $\alpha < 1$.
- 6. Tracer l'allure de C. On précisera la tangente au point d'abscisse 1.

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et, pour tout $n\in\mathbb{N},\,u_{n+1}=f\left(u_n\right)$.

- 7. Montrer que, pour tout $n \in \mathbb{N}, u_n$ existe et $u_n \geq 2$.
- 8. ** Établir, par récurrence : $\forall n \in \mathbb{N}, u_n \geq e^n$. Quelle est la limite de u_n lorsque l'entier n tend vers l'infini?

On considère enfin les fonctions $F: x \mapsto \int_1^x f(t)dt$ et $G(x) = F(x) - e^x$ définies sur $]0, +\infty[$.

- 9. Rappeler les propriétés vues en terminale sur la fonction F.
- 10. Exprimer la dérivée G' en fonction de f et de l'exponentielle.
- 11. a) Montrer que G admet une tangente horizontale en x ssi $x + \ln x = e$.
 - b) En reprenant une étude faite ci-dessus, en déduire que G admet une unique tangente horizontale.