Exercice 1:

Dans un supermarché, un client a le choix entre 3 lessives appelées A, B et C. Une étude statistique a montré que si lors de son n^{ie} achat (pour $n \in \mathbb{N}^*$), le client choisissait la lessive A, alors lors de son $n+1^e$ achat, il choisissait la lessive B. Si lors de son n^{ie} achat, le client achetait la lessive B, alors, lors de son $n+1^e$ achat, il choisissait la lessive A avec probabilité 1/4, la lessive C avec probabilité 1/4 et gardait la lessive B avec probabilité 1/2. Enfin, si lors de son n^{ie} achat, le client achetait la lessive C, alors lors de son $n+1^e$ achat il choisissait la lessive B.

Lors de son premier achat, le client choisit la lessive A.

Pour tout $n \in \mathbb{N}^*$, On note a_n (resp. b_n et c_n) la probabilité que le client achète la lessive A (resp. B, C) lors de son n^{ie} achat.

- 1. A l'aide de la formule des probabilités totales, exprimer b_{n+1} en fonction de a_n, b_n et c_n , pour tout $n \in \mathbb{N}^*$. Donner (en justifiant) les relations analogues sur a_{n+1} et c_{n+1} .
- 2. Justifier que pour tout $n \in \mathbb{N}^*$, $b_{n+2} = \frac{1}{2}b_{n+1} + \frac{1}{2}b_n$.
- 3. En déduire, pour tout $n \in \mathbb{N}^*$, l'expression de b_n en fonction de n, puis celle de a_n et c_n en fonction de n.

Exercice 2:

Une urne contient une boule noire et (n-1) boules blanches, n désignant un entier supérieur ou égal à 2. On vide l'urne en effectuant des tirages d'une boule de la manière suivante : les tirages d'ordre impair s'effectuent sans remise, et les tirages d'ordre pair s'effectuent avec remise de la boule tirée. Autrement dit, le premier tirage s'effectue sans remise, le deuxième avec remise, le troisième sans remise etc. On désigne par B_k (resp. N_k) l'événement "le k-ième tirage donne une boule blanche (resp. noire)", que ce soit la première fois ou non.

- 1. Calculer $P(N_1)$, $P(N_2)$, puis $P(N_3)$ et $P(N_4)$. indication : bien commencer par décrire les événements!
- 2. ** Pour tout entier naturel $j \in [1, n-1]$, calculer $P(N_{2j+1})$ et $P(N_{2j})$.

Devoir à la maison 6

à rendre le lundi 19 novembre 2018

Exercice 3:

Dans un supermarché, un client a le choix entre 3 lessives appelées A, B et C. Une étude statistique a montré que si lors de son n^{ie} achat (pour $n \in \mathbb{N}^*$), le client choisissait la lessive A, alors lors de son $n+1^e$ achat, il choisissait la lessive B. Si lors de son n^{ie} achat, le client achetait la lessive B, alors, lors de son $n+i^e$ achat, il choisissait la lessive A avec probabilité 1/4, la lessive C avec probabilité 1/4 et gardait la lessive B avec probabilité 1/2. Enfin, si lors de son n^{ie} achat, le client achetait la lessive C, alors lors de son $n+1^e$ achat il choisissait la lessive B.

Lors de son premier achat, le client choisit la lessive A.

On note a_n (resp. b_n et c_n) la probabilité que le client achète la lessive A (resp. B, C) lors de son n^{ie} achat.

- 1. A l'aide de la formule des probabilités totales, exprimer b_{n+1} en fonction de a_n, b_n et c_n , pour tout $n \in \mathbb{N}^*$. Donner (en justifiant) les relations analogues sur a_{n+1} et c_{n+1} .
- 2. Justifier que pour tout $n \in \mathbb{N}^*$, $b_{n+2} = \frac{1}{2}b_{n+1} + \frac{1}{2}b_n$.
- 3. En déduire, pour tout $n \in \mathbb{N}^*$, l'expression de b_n en fonction de n, puis celle de a_n et c_n en fonction de n.

Exercice 4:

Une urne contient une boule noire et (n-1) boules blanches, n désignant un entier supérieur ou égal à 2. On vide l'urne en effectuant des tirages d'une boule de la manière suivante : les tirages d'ordre impair s'effectuent sans remise, et les tirages d'ordre pair s'effectuent avec remise de la boule tirée. Autrement dit, le premier tirage s'effectue sans remise, le deuxième avec remise, le troisième sans remise etc. On désigne par B_k (resp. N_k) l'événement "le k-ième tirage donne une boule blanche (resp. noire)", que ce soit la première fois ou non.

- 1. Calculer $P(N_1)$, $P(N_2)$, puis $P(N_3)$ et $P(N_4)$. indication : bien commencer par décrire les événements!
- 2. ** Pour tout entier naturel $j \in [1, n-1]$, calculer $P(N_{2j+1})$ et $P(N_{2j})$.