Corrigé du devoir maison 14

Exercice 1: extrait d'edhec E 2018

- 1. Soit $n \in \mathbb{N}^*$. $t \mapsto \frac{1}{(1+t^2)^n}$ est continue et positive sur $[1, +\infty[$. De plus $1+t^2 \underset{t \to +\infty}{\sim} t^2$ donc $\frac{1}{(1+t^2)^n} \sim \frac{1}{(t^2)^n} = \frac{1}{t^{2n}}$. Comme $2n \geq 2 > 1$, l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{t^{2n}} dt$ converge, donc d'après le critère d'équivalence pour les fonctions continues et positives, $\int_1^{+\infty} \frac{1}{(1+t^2)^n} dt$ converge. Puis par continuité de l'intérieur sur [0,1], on en déduit que l'intégrale u_n converge bien.
- 2. Poser A > 0. Alors $\int_1^A \frac{1}{1+t^2} dt = [\arctan(1+t^2)]_0^A = \arctan(A) \arctan(0) \xrightarrow[A \to +\infty]{\pi} \frac{\pi}{2}$. Donc $u_1 = \frac{\pi}{2}$.
- 3. Par linéarité, $\forall n \in \mathbb{N}^*$, $u_{n+1} u_n = \int_0^{+\infty} \frac{1}{(1+t^2)^{n+1}} \frac{1}{(1+t^2)^n} dt = \int_0^{+\infty} \frac{1-(1+t^2)}{(1+t^2)^{n+1}} dt = \int_0^{+\infty} \frac{-t^2}{(1+t^2)^{n+1}} dt \leq 0$. En effet, pour tout $t \geq 0$, $\frac{-t}{(1+t^2)^{n+1}} \leq 0$, et les bornes sont dans le bon sens, donc la positivité des intégrales convergentes permet d'obtenir le signe de l'intégrale. De plus, pour des raisons très similaires, on a : $\forall n \in \mathbb{N}^*$, $u_n \geq 0$, donc la suite (u_n) est décroissante et minorée par 0, donc converge.
- 4. Soit $n_i n_N N s$. D'après 3., $u_n u_{n+1} = \int_0^{+\infty} \frac{t^2}{(1+t^2)^{n+1}} dt$. On va faire une IPP : $u = \frac{1}{1+t^2)^n} = (1+t^2)^{-n}$ et v' = 1 d'où, $u' = -n2t(1+t^2)^{-n-1} = \frac{-n2t}{(1+t^2)^{n+1}}$ et v = t. u et v sont C^1 sur \mathbb{R}^+ . Il reste à poser A > 0. Alors $\int_0^A \frac{1}{(1+t^2)^n} dt = \left[\frac{t}{(1+t^2)^n}\right]_0^A + 2n \int_0^A \frac{t^2}{(1+t^2)^{n+1}} dt = \frac{A}{(1+A^2)^n} + 2n \int_0^A \frac{t^2}{(1+t^2)^{n+1}} dt \xrightarrow{A \to +\infty} 0 + 2n(u_n u_{n+1})$, car $\frac{A}{(1+A^2)^n} \sim \frac{A}{A^{2n}} = \frac{1}{A^{2n-1}} \xrightarrow{A \to +\infty} 0$ (2n-1>0). Finalement, on a bien que pour tout $n \in \mathbb{N}^*$, $u_n = 2n(u_n u_{n+1})$.
- 5. On en déduit : $u_n = 2nu_n 2nu_{n+1}$ soit encore $u_{n+1} = \frac{2n-1}{2n}u_n$, puisque $n \neq 0$.
- 6. Par récurrence : pour $n=1, u_1=\frac{\pi}{2}$ et $\frac{0!}{2^0\times(0!)^2}\frac{\pi}{2}=1\times\frac{\pi}{2}$. Soit $n\in\mathbb{N}^*$ tel que $u_n=\frac{(2n-2)!}{2^{2n-2}((n-1)!)^2}\frac{\pi}{2}$ et montrons que $u_{n+1}=\frac{(2n)!}{2^{2n}\times(n!)^2}\frac{\pi}{2}$. Or $u_{n+1}=\frac{2n-1}{2n}u_n=\frac{2n-1}{2n}\frac{(2n-2)!}{2^{2n-2}((n-1)!)^2}\frac{\pi}{2}\times\frac{2n}{2n}=\frac{(2n)!}{2\times n\times 2\times n\times (2^{2n-2}((n-1)!)^2)}\frac{\pi}{2}=\frac{(2n)!}{2^{2n}(n(n-1)!)^2}\frac{\pi}{2}=\frac{(2n)!}{2^{2n}\times(n!)^2}\frac{\pi}{2}$. Conclure.

Exercice 2 :edhec S 2007

- 1. Soit $n \in \mathbb{N}^*$. La fonction $x \mapsto \frac{e^{-x}}{x+1/n}$ est continue sur $[0, +\infty[$ donc l'intégrale est impropre en $+\infty$. De plus : $\forall x \geq 0, \ 0 \leq \frac{e^{-x}}{x+\frac{1}{n}} \leq \frac{e^{-x}}{1/n} = ne^{-x}$ OU $\frac{e^{-x}}{x+\frac{1}{n}} = o(e^{-x})$ OU ... Comme $\int_0^{+\infty} e^{-x} dx$ converge (intégrale de référence), par critère de comparaison (ou négligeabilité) des intégrales de fonctions continues et positives, on en déduit que l'intégrale $\int_0^{+\infty} \frac{e^{-x}}{x+\frac{1}{n}} dx$ converge.
- 2. (a) Soit $n \in \mathbb{N}^*$. $x \ge 1 \Rightarrow x + \frac{1}{n} \ge 1 \Rightarrow 0 \le \frac{e^{-x}}{x + \frac{1}{n}} \le e^{-x}$. Par croissance de l'intégrale, comme les intégrales convergent, et que les bornes sont dans le bon sens on $a: 0 \le \int_1^{+\infty} \frac{e^{-x}}{x + \frac{1}{n}} dx \le \int_1^{+\infty} e^{-x} dx = \frac{1}{e}$. En effet, $\int_1^{+\infty} e^{-x} dx = \lim_{A \to +\infty} [-e^{-x}]_1^A = \lim_{A \to +\infty} -e^{-A} + e^{-1} = e^{-1}$. D'où $\forall n \in \mathbb{N}^*$, $0 \le w_n \le \frac{1}{e}$.
 - (b) Soit $n \in \mathbb{N}^*$. Par décroissance de la fonction $t \mapsto e^{-t}$, $0 \le x \le 1 \Rightarrow e^{-x} \ge e^{-1}$ d'où par positivité de $x + \frac{1}{n}$, $\frac{e^{-1}}{\left(x + \frac{1}{n}\right)} \le \frac{e^{-x}}{\left(x + \frac{1}{n}\right)}$, et donc comme 0 < 1, par croissance de l'intégrale (toutes les intégrales en jeu convergent) $\int_0^1 \frac{e^{-1}}{\left(x + \frac{1}{n}\right)} dx \le \int_0^1 \frac{e^{-x}}{\left(x + \frac{1}{n}\right)} dx.$ On conclut en calculant $\int_0^1 \frac{e^{-1}}{\left(x + \frac{1}{n}\right)} dx = \frac{1}{e} \left[\ln\left(x + \frac{1}{n}\right)\right]_0^1 = \frac{1}{e} \ln(n+1).$
 - (c) D'après la relation de Chasles, $\forall n \in \mathbb{N}^*, u_n = v_n + w_n \ge v_n \ge \ln(n+1) \xrightarrow[n \to +\infty]{} +\infty.$
- 3. (a) La fonction $x\mapsto \frac{1-e^{-x}}{x}$ est continue sur]0,1] comme quotient de fonctions continues et de dénominateur ne s'annulant pas sur]0,1]. De plus, $e^u-1\underset{u\to 0}{\sim} u$ d'où $e^{-x}-1\underset{x\to 0}{\sim} -x$ car $u=-x\to 0$, et finalement $f(x)\underset{x\to 0}{\sim} \frac{x}{x}=1\to 1$ donc f se prolonge par continuité en 0. L'intégrale, faussement impropre en 0, converge.
 - (b) Soit $n \in \mathbb{N}^*$. $\forall x \in]0,1]$, on a $e^{-x} \leq e^0 = 1$ donc $1 e^{-x} \geq 0$ et $0 \leq x \leq x + \frac{1}{n}$ d'où $0 \leq \frac{1 e^{-x}}{x + \frac{1}{n}} \leq \frac{1 e^{-x}}{x}$. Comme les intégrales convergent, et que 0 < 1, $0 \leq \int_0^1 \frac{1 e^{-x}}{x + \frac{1}{n}} dx \leq I$ pour tout entier $n \geq 1$.
 - (c) Linéarité (toutes les intégrales sont définies) : $0 \le \int_0^1 \frac{1}{x + \frac{1}{n}} dx v_n \le I$, d'où $0 \le \ln(n+1) v_n \le I$ et enfin, $\ln(n+1) I \le v_n \le \ln(n+1)$.
 - (d) Comme $\ln(n+1) > 0$ pour tout $n \ge 1$, $1 \frac{I}{\ln(n+1)} \le \frac{v_n}{\ln(n+1)} \le 1$ et par le théorème d'encadrement, on a alors : $\lim_{n \to +\infty} \frac{v_n}{\ln(n+1)} = 1$. D'où $v_n \underset{n \to +\infty}{\sim} \ln(n+1)$. Comme par ailleurs, $w_n = \underset{n \to +\infty}{o} (v_n)$ (faire le quotient), on obtient $u_n = v_n + w_n \underset{n \to +\infty}{\sim} v_n \underset{n \to +\infty}{\sim} \ln(n+1)$.