Exercice 1:

Pour toutes suites $u = (u_n)_{n \in \mathbb{N}^*}$ et $v = (v_n)_{n \in \mathbb{N}^*}$, on pose : $\forall n \in \mathbb{N}^*$, $w_n = \sum_{k=1}^n u_k \, v_{n-k}$

Pour tout entier naturel non-nul n, calculer w_n en fonction de n dans chacun des cas suivants :

- 1. $\forall n \in \mathbb{N}^*, u_n = 2 \text{ et } v_n = 3.$
- 2. $\forall n \in \mathbb{N}^*, u_n = 2^n \text{ et } v_n = 3^n.$
- 3. $\forall n \in \mathbb{N}^*, u_n = \frac{2^n}{n!}$ et $v_n = \frac{3^n}{n!}$

Exercice 2:

Soit f la fonction définie par $f(x) = x^{1-x^2}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Déterminer les limites de f en 0 et en $+\infty$.
- 3. Montrer que pour tout x > 0, $f'(x) = x(-2\ln x + \frac{1}{x^2} 1)e^{(1-x^2)\ln x}$.
- 4. A l'aide d'une fonction auxiliaire, déterminer le signe de f'.
- 5. Dresser le tableau de variations de f, puis dessiner l'allure de la courbe.

Devoir à la maison 2

à rendre au plus tard le mardi 22 septembre 2020

Exercice 3:

Pour toutes suites $u=(u_n)_{n\in\mathbb{N}^*}$ et $v=(v_n)_{n\in\mathbb{N}^*}$, on pose : $\forall n\in\mathbb{N}^*,\ w_n=\sum_{k=1}^n u_k\,v_{n-k}$

Pour tout entier naturel non-nul n, calculer w_n en fonction de n dans chacun des cas suivants :

- 1. $\forall n \in \mathbb{N}^*, u_n = 2 \text{ et } v_n = 3.$
- 2. $\forall n \in \mathbb{N}^*, u_n = 2^n \text{ et } v_n = 3^n.$
- 3. $\forall n \in \mathbb{N}^*, u_n = \frac{2^n}{n!} \text{ et } v_n = \frac{3^n}{n!}$

Exercice 4:

Soit f la fonction définie par $f(x) = x^{1-x^2}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Déterminer les limites de f en 0 et en $+\infty$.
- 3. Montrer que pour tout x > 0, $f'(x) = x(-2\ln x + \frac{1}{x^2} 1)e^{(1-x^2)\ln x}$.
- 4. A l'aide d'une fonction auxiliaire, déterminer le signe de f'.
- 5. Dresser le tableau de variations de f, puis dessiner l'allure de la courbe.

Devoir à la maison 2

à rendre au plus tard le mardi 22 septembre 2020

Exercice 5:

Pour toutes suites $u = (u_n)_{n \in \mathbb{N}^*}$ et $v = (v_n)_{n \in \mathbb{N}^*}$, on pose : $\forall n \in \mathbb{N}^*$, $w_n = \sum_{k=1}^n u_k v_{n-k}$

Pour tout entier naturel non-nul n, calculer w_n en fonction de n dans chacun des cas suivants :

- 1. $\forall n \in \mathbb{N}^*, u_n = 2 \text{ et } v_n = 3.$
- 2. $\forall n \in \mathbb{N}^*, u_n = 2^n \text{ et } v_n = 3^n.$
- 3. $\forall n \in \mathbb{N}^*, u_n = \frac{2^n}{n!} \text{ et } v_n = \frac{3^n}{n!}$

Exercice 6:

Soit f la fonction définie par $f(x) = x^{1-x^2}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Déterminer les limites de f en 0 et en $+\infty$.
- 3. Montrer que pour tout x > 0, $f'(x) = x(-2\ln x + \frac{1}{x^2} 1)e^{(1-x^2)\ln x}$.
- 4. A l'aide d'une fonction auxiliaire, déterminer le signe de f'.
- 5. Dresser le tableau de variations de f, puis dessiner l'allure de la courbe.