Deux options selon vos besoins :

Si vous avez encore des difficultés dans l'étude des fonctions, je vous conseille l'option 1: exercice 1 + exercice 2 et en autonomie refaire l'exercice 4 du DS 2.

Sinon, je vous conseille l'option 2 : exercice 1 + exercice 3 et en autonomie regarder l'exercice 2 de ce DM pour s'entraîner à calculer, ou refaire l'exercice 4 du DS 2.

Exercice 1: Pour tous

Soit $n \in \mathbb{N}^*$. Une urne contient au départ une boule blanche et une boule noire. On effectue n tirages selon le protocole suivant : après chaque tirage, la boule tirée est remise dans l'urne, et on ajoute une boule de la couleur qui vient d'être tirée avant le tirage suivant.

- 1. Introduire des événements adaptés à l'expérience.
- 2. Calculer la probabilité d'obtenir une boule blanche au deuxième tirage.
- 3. Soit A_n l'événement "on n'obtient que des boules noires lors des n tirages". Décrire l'événement A_n puis calculer $P(A_n)$.
- 4. Même question avec l'événement C_n "on obtient exactement une blanche au cours des n tirages".
- 5. Soit pour tout $k \in [1, n]$, T_k " on obtient la première boule blanche au k^{ie} tirage.
 - (a) Calculer $P(T_k)$ pour tout $k \in [1, n]$ (ne pas oublier de commencer par décrire les événements).
 - (b) Justifier que pour tout $k \ge 1$: $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$. Vérifier alors par le calcul que $\sum_{k=1}^{n} P(T_k) + P(A_n) = 1$. Comment aurait-on pu faire autrement?

Exercice 2: option 1

- 1. (a) Soit g la fonction définie sur \mathbb{R} par $g(x) = xe^x e^x + 1$. Déterminer le signe de g.
 - (b) Déterminer les limites de g au voisinage de $\pm \infty$.
- 2. On introduit la fonction f définie par $f(x) = \ln(\frac{e^x 1}{x})$.
 - (a) Déterminer l'ensemble de définition \mathcal{D} de f.
 - (b) Déterminer les limites de f au voisinage de $+\infty$ et de $-\infty$. f se prolonge-t-elle par continuité en 0?
 - (c) Dresser la tableau de variations complet de f.
 - (d) Montrer que pour tout $x \in \mathcal{D}$, f(x) x = f(-x). En déduire le signe de f(x) x sur \mathcal{D} .
- 3. On introduit la suite u définie par $u_0 > 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - (a) Ecrire une fonction Scilab qui prend en argument n et u_0 et qui renvoie la valeur de u_n .
 - (b) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N}$, $u_n > 0$.
 - (c) Montrer que la suite u converge.
 - (d) En raisonnant par l'absurde, montrer que la suite u converge vers 0.

Exercice 3: option 2

On considère l'ensemble E des polynômes $P \in \mathbb{R}[X]$ tels que $P(X)P(X+2) = P(X^2)$. Dans tout l'exercice, P désigne un élément de E, et $r \in \mathbb{C}$ une racine de P.

- 1. Montrer que r^2 est racine de P.
- 2. On suppose dans cette question que $r \neq 0$ et $|r| \neq 1$.
 - (a) A l'aide de la question 1., montrer que P admet une infinité de racines.
 - (b) Que peut-on en conclure sur P?
- 3. Dans cette question, on suppose que P n'est pas le polynôme nul.
 - (a) Que peut-on en déduire sur r?
 - (b) Montrer que $(r-2)^2$ est racine de P.
 - (c) Montrer alors que r ne peut pas être nul.
 - (d) Montrer que : $|r| = |(r-2)^2| = 1$.
 - (e) En déduire que la seule racine possible de P est 1. vous pouvez commencer par le cas où $r \in \mathbb{R}$, avant de montrer le résultat lorsque $r \in \mathbb{C}$...
- 4. Proposer alors une forme de P, dans le cas où P n'est pas le polynôme nul.
- 5. Déterminer alors l'ensemble E.