Eléments de correction du DS 1

Questions

- 1. (a) $\exists m \in \mathbb{R}$ tel que $\forall x \in I$, $f(x) \geq m$ (b) $\exists x \in I$, f(x) = 0 (c) $\exists q \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$, $u_{n+1} = qu_n$.
- 2. cf corrigé DM 1, question, en ligne. Vérifier que vous avez (enfin!) penser à l'ensemble de définition avant de vous lancer dans les équivalences.
- 3. cf feuille d'exo \sum et DM 2 pour des rédactions détaillées.

En accéléré :
$$A_n = 2\left(\sum_{k=1}^n k^2 - \sum_{k=1}^9 k^2\right) - \left(\sum_{k=1}^n k - \sum_{k=1}^9 k\right) = 2\left(\frac{n(n+1)(2n+1)}{6} - \frac{9\times10\times19}{6}\right) - \left(\frac{n(n+1)}{2} - \frac{9\times10}{2}\right)$$
.
$$B_n = \sum_{k=0}^{n-1} (-2^3)^k = \frac{1-(-8)^n}{1-(-8)} \text{ car } -8 \neq 1. \ C_n = 5^n \sum_{k=0}^n \left(\frac{2}{5}\right)^n = 5^n \frac{1-(2/5)^{n+1}}{1-(2/5)} \text{ car } 2/5 \neq 1$$

$$D_n = \frac{1}{n!} \sum_{k=1}^n \binom{n}{k} 3^k 2^{n-k} = \frac{1}{n!} [(3+2)^n - \binom{n}{0} 3^0 2^n] = \frac{5^n - 2^n}{n!} \text{ d'après la formule du binôme ...}$$

- 4. L'expression |x-1| dépend du signe de x-1. Premier cas : $x \in [1, +\infty[$. Alors |x-1| = x-1| et l'inégalité à montrer devient $x-1 \le x^2-x+1$. Or $x^2-x+1-(x-1)=x^2-2x+2=(x-1)^2x+1\ge 0$ (sinon, poser Δ et montrer $\Delta<0$). Deuxième cas : $x \in]-\infty, 1[$. Alors |x-1|=-(x-1)| et l'inégalité à montrer devient $-(x-1)\le x^2-x+1$. Or $x^2-x+1+(x-1)=x^2\ge 0$. Il reste à conclure!
- 5. ** Rappel : le raisonnement par contraposée pour montrer " $P \Rightarrow Q$ " consiste à montrer " $nonQ \Rightarrow nonP$ ". Ici, on suppose donc "n est un entier impair", et on doit montrer que " $n^2 1$ est multiple de 8". Comme n est un entier impair, il existe $k \in \mathbb{N}/$ n = 2k + 1. Alors $n^2 1 = (2k + 1)^2 1 = 4k^2 + 4k = 4k(k + 1)$. Il est facile de voir que 4 divise $n^2 1$. Il reste à montrer que 2 divise k(k + 1) Or k et k + 1 sont deux entiers consécutifs, donc forcément l'un est pair. donc k(k + 1) peut s'écrire sous la forme 2j, avec $j \in \mathbb{N}^*$ et finalement $n^2 1 = 4 \times 2 \times j = 8j$ est bien multiple de 8.

Exercice 1: inspiré d'Esclsca 99

1.
$$\sum_{i=0}^{2n} {2n \choose i} = \sum_{i=0}^{2n} {2n \choose k} 1^k 1^{2n-k} = (1+1)^{2n} = 2^{2n}$$
 d'après le binôme de Newton.

2. Soit
$$k \in [0, 2n]$$
. Alors $\binom{2n}{2n-k} = \frac{(2n)!}{(2n-k)!(2n-(2n-k))!} = \frac{(2n)!}{(2n-k)!(k)!} = \binom{2n}{k}$.

3. (a)
$$S_1 = \sum_{i=0}^{1} {2 \choose 1+i} = {2 \choose 1} + {2 \choose 2} = 2+1 = 3 \text{ et } S_2 = \sum_{i=0}^{2} {4 \choose 2+i} = {4 \choose 2} + {4 \choose 3} + {4 \choose 4} = 6+4+1 = 11.$$

(b) On commence par poser
$$j = i + n$$
. Les bornes deviennent : $i = 0 \Rightarrow j = n$ et $i = n \Rightarrow j = 2n$, d'où $S_n = \sum_{j=n}^{2n} \binom{2n}{j}$. Puis en utilisant (2), il vient $S_n = \sum_{j=n}^{2n} \binom{2n}{2n-j} = \binom{2n}{n} + \binom{2n}{n-1} + \binom{2n}{n-2} + \dots + \binom{2n}{0} = \sum_{k=0}^{n} \binom{2n}{k}$

- 4. D'après 3.(b), $2S_n = S_n + S_n = \sum_{j=n}^{2n} {2n \choose j} + \sum_{k=0}^{n} {2n \choose k} = \sum_{k=0}^{2n} {2n \choose k} + {2n \choose n}$ (ce dernier terme étant présent dans les deux sommes). D'où $2S_n = 2^{2n} + {2n \choose n}$. On conclut en divisant par 2 l'égalité.
- 5. (a) Soit $p \in \mathbb{N}^*$. Alors $u_{p+1} = \frac{\binom{2(p+1)}{p+1}}{2(p+1)} = \frac{\binom{2p+2}{p+1}}{2^{2p+2}} = \frac{\frac{(2p+2)!}{(p+1)!(p+1)!}}{2^{2p} \times 2^2} = \frac{(2p+2)(2p+1)(2p)!}{(p+1)p!(p+1)p!} \frac{1}{2^{2p} \times 4} = \frac{(2p+2)(2p+1)}{4(p+1)^2} \times \frac{(2p)!}{p!p!} \frac{1}{2^{2p}} = \frac{2(p+1)(2p+1)}{4(p+1)^2} \times u_p = \frac{2p+1}{2(p+1)} u_p$.
 - (b) $u_1 = \frac{\binom{2}{1}}{2^2} = \frac{1}{2}$. Or $\frac{1}{\sqrt{2+1}} \ge \frac{1}{\sqrt{4}} = \frac{1}{2} = u_1$. Supposons que pour un certain $p \in \mathbb{N}^*$, $u_p \le \frac{1}{\sqrt{2p+1}}$, et montrons que pour ce p, $u_{p+1} \le \frac{1}{\sqrt{2(p+1)+1}}$. Or $u_p \le \frac{1}{\sqrt{2p+1}}$, donc comme $\frac{2p+1}{2p+2} \ge 0$, $\frac{2p+1}{2p+2}u_p \le \frac{2p+1}{2p+2}\frac{1}{\sqrt{2p+1}}$ d'où $u_{p+1} \le \frac{\sqrt{2p+1}}{2p+2}$. Il reste à montrer que $\frac{\sqrt{2p+1}}{2p+2} \le \frac{1}{\sqrt{2p+3}}$, ce qui revient à montrer que (tout est positif): $\frac{2p+1}{(2p+2)^4} \le \frac{1}{2p+3}$. Calcul technique mais qui sort bien : $\frac{1}{2p+3} \frac{2p+1}{(2p+2)^2} = \frac{(2p+2)^2 (2p+1)(2p+3)}{(2p+3)(2p+2)^2} = \frac{4p^2 + 8p + 4 (4p^2 + 8p + 3)}{(2p+3)(2p+2)^2} = \frac{1}{(2p+3)(2p+2)^2} \ge 0$, ce qui achève l'hérédité. Il reste à conclure. ouf!

(c) Pour tout $p \in \mathbb{N}^*$, $0 \le u_p \le \frac{1}{\sqrt{2p+2}} \underset{p \to +\infty}{\longrightarrow} 0$ donc d'après le théorème d'encadrement, $\lim_{p \to +\infty} u_p = 0$. Donc la suite u converge (elle admet une limite finie).

1

Exercice 2:

- A 1. $\mathcal{D}_f = \{x \in \mathbb{R} \mid e^x + e^{-x} > 0\} = \mathbb{R}$ puisque pour tout $x \in \mathbb{R}$, $e^x > 0$ (donc $e^{-x} > 0$). Parité: $\forall x \in \mathbb{R}$, $-x \in \mathbb{R}$ et $f(-x) = \ln(e^{-x} + e^x) = f(x)$. Donc f est paire sur \mathbb{R} .
 - 2. Pour $x \in \mathbb{R}$, $e^x e^{-x} > 0 \Leftrightarrow e^x > e^{-x} \Leftrightarrow x > -x$ (stricte croissance du ln) $\Leftrightarrow 2x > 0 \Leftrightarrow x > 0$.
 - 3. f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$. Donc par 1., f'(x) > 0 ssi x > 0. Pas de FI pour les limites, on trouve $\lim_{x \to +\infty} f(x) = +\infty = \lim_{x \to -\infty} f(x)$ (à détailler quand même un peu!)
 - 4. f est strictement croissante et continue sur \mathbb{R}_+^* et $1 \in [\ln(2), +\infty[$, puisque $1 = \ln(e) \ge \ln(2)$ par croissance du ln. Donc d'après le théorème "dont on reverra le nom", il existe une unique solution $\alpha \in \mathbb{R}_+$ à l'équation f(x) = 1.
 - 5. Pour $x \in \mathbb{R}$, $f(x) x = \ln(e^x + e^{-x}) \ln(e^x) = \ln(\frac{e^x + e^{-x}}{e^x}) = \ln(1 + e^{-2x}) \xrightarrow[x \to +\infty]{} 0$.
 - 6. Soit $x \in \mathbb{R}$. D'après 5., $f(x) x = \ln(1 + e^{-2x})$ et comme $1 + e^{-2x} > 1$ et que ln est strictement croissante sur $]0, +\infty[$ on a alors $\ln(1 + e^{-2x}) > \ln(1) = 0$. Ici la question était un "montrons que", et non "résoudre l'inéquation f(x) > x", donc NE PAS partir du résultat!
 - 7. Pour $x \in \mathbb{R}$ (ici résolution!), $f(x) < x+1 \Leftrightarrow f(x)-x < 1 \Leftrightarrow \ln(1+e^{-2x}) < 1 \Leftrightarrow 1+e^{-2x} < e$ car exp strictement $\nearrow \sup \mathbb{R} \Leftrightarrow e^{-2x} < e 1 \Leftrightarrow -2x < \ln(e-1)$ (car ln strictement $\nearrow \sup \mathbb{R}_+^*$) $\Leftrightarrow x > \frac{-\ln(e-1)}{2}$
- B 1. Par récurrence : $u_0 = 0 \ge 0$. Puis, supposons que pour un certain $n, u_n \ge 0$, et montrons que $u_{n+1} \ge 0$. Or f est croissante sur \mathbb{R}_+ , donc $u_n \ge 0 \Rightarrow f(u_n) \ge f(0) \Rightarrow u_{n+1} \ge \ln(2) \ge \ln(1) = 0$. Conclure.
 - 2. Soit $n \in \mathbb{N}$. Avec $x = u_n \in \mathbb{R}$, A.6. donne: $f(u_n) > u_n$ donc $u_{n+1} > u_n$. (ou $u_{n+1} u_n = f(u_n) u_n > 0$ par A.5.) La suite est croissante.
 - 3. Raisonnement par l'absurde : on suppose que la suite u converge. Soit ℓ sa limite ; $u_n \to \ell$ alors (par continuité de f sur \mathbb{R}), $f(u_n) \underset{n \to +\infty}{\longrightarrow} f(\ell)$, donc par passage à la limite dans la relation de récurrence $u_{n+1} = \ln(e^{u_n} + e^{-u_n})$ vraie pour tout $n \in \mathbb{N}$, on obtient $\ell = f(\ell)$. Equation impossible par A.6 . Donc, la suite u diverge. Comme la suite est croissante, $u_n \underset{n \to +\infty}{\longrightarrow} +\infty$.
 - 4. Comme la suite u est croissante et que $u_0 = 0$, on a pour tout entier n, $u_n \ge 0 > -\frac{\ln(e-1)}{2}$ et donc par A7. on obtient $f(u_n) < u_n + 1$ soit $u_{n+1} < u_n + 1$.
 - 5. Par récurrence : pour n=0 on a $u_0=0<0+1$ Supposons que pour un certain $n,\,u_n< n+1.$ Montrons que $u_{n+1}< n+2.$ Or par la question précédente puis par H.R, $u_{n+1}< u_n+1< n+1+1$ donc $u_{n+1}< n+2.$ Conclusion : pour tout entier $n,\quad u_n< n+1.$
 - 6. Encore une récurrence! Hérédité : supposons $u_n \le \ln(n+1)$, alors par croissance de f sur \mathbb{R}_+ , $u_{n+1} = f(u_n) \le f(\ln(n+1)) = \ln(e^{\ln(n+1)} + e^{-\ln(n+1)}) = \ln(n+1+\frac{1}{n+1}) \le \ln(n+1+1)$ [par croissance du \ln] = $\ln(n+2)$.

Exercice 3: Ecricome E 99

Question préliminaire :

Suite récurrente linéaire d'ordre 2 d'équation caractéristique : $x^2 - \frac{1}{3}x - \frac{1}{3} = 0$. On obtient $\Delta = \frac{13}{9}$, $\sqrt{\Delta} = \frac{\sqrt{13}}{3}$ d'où deux racines $r_1 = \frac{1-\sqrt{13}}{6}$ et $r_2 = \frac{1+\sqrt{13}}{6}$. On sait alors qu'il existe $(\lambda,\mu) \in \mathbb{R}^2$, tel que pour tout $n \in \mathbb{N}$, $x_n = \lambda r_1^n + \mu r_2^n$. Or $9 \le 13 \le 16$ d'où $3 \le \sqrt{13} \le 4$ et finalement (par construction), $0 \le r_2 \le \frac{5}{6} < 1$ et $-1 < -\frac{1}{2} \le r_2 \le 0$. D'où $\lim_{n \to +\infty} r_1^n = 0 = \lim_{n \to +\infty} r_2^n$ et par somme $\lim_{n \to +\infty} x_n = 0$.

Question 1

- a) Montrons $\forall n \in \mathbb{N}$, " u_n existe et $u_n \geq 1$ ". $Cas\ n=0$ et n=1: par hypothèse, $u_0=a\geq 1$ et $u_1=b\geq 1$. Supposons que pour un certain entier n" u_n existe et $u_n\geq 1$ ", et " u_{n+1} existe et $u_{n+1}\geq 1$ ". Or $\sqrt{}$ est définie sur \mathbb{R}^+ , donc par H.R. u_{n+2} existe, et par croissance de $\sqrt{}$, $\sqrt{u_n}\geq \sqrt{1}=1$ et $\sqrt{u_{n+1}}\geq 1$ d'où $u_{n+2}\geq 2\geq 1$. Ccl.
- b) Supposons que la suite u converge vers un réel ℓ . Alors par passage à la limite dans l'inégalité du a), on obtient $\ell \geq 1$. Puis comme $\lim_{n \to +\infty} u_n = \ell = \lim_{n \to +\infty} u_{n+1}$, par passage à la limite dans la relation $u_{n+2} = \sqrt{u_n} + \sqrt{u_{n+1}}$: $\ell = \sqrt{\ell} + \sqrt{\ell} \Leftrightarrow \ell = 2\sqrt{\ell} \Leftrightarrow \ell^2 = 4\ell$ (car $\ell \geq 0$) $\Leftrightarrow \ell = 0$ ou $\ell = 4$. Comme $\ell \geq 1$, on obtient $\ell = 4$.

Question 2

- a) Supposons que la suite v converge vers 0. Alors comme $\sqrt{u_n} = 2(v_n + 1)$, on obtient $u_n = 4(v_n + 1)^2 \xrightarrow[n \to +\infty]{} 4$.
- b) Il est équivalent de montrer que $v_{n+2} \times 2(2+v_{n+2}) = v_{n+1}+v_n$ car $2+v_{n+2} \neq 0$. Regardons chaque membre : $v_{n+1}+v_n=\frac{1}{2}\sqrt{u_{n+1}}-1+\frac{1}{2}\sqrt{u_n}-1=\frac{1}{2}(\sqrt{u_{n+1}}+\sqrt{u_n})-2=\frac{1}{2}u_{n+2}-2$. Et de même : $v_{n+2}\times 2(2+v_{n+2})=4v_{n+2}+2v_{n+2}^2=2\sqrt{u_{n+2}}-4+2(\frac{1}{2}\sqrt{u_{n+2}}-1)^2=2\sqrt{u_{n+2}}-4+\frac{1}{2}u_{n+2}-2\sqrt{u_{n+2}}+2=\frac{1}{2}u_{n+2}-2$.

- c) Par 1.a) $2 + v_{n+2} = \frac{1}{2}\sqrt{u_n} + 1 \ge \frac{1}{2} + 1 = \frac{3}{2}$ d'où $|2(2 + v_{n+2})| = 2(2 + v_{n+2}) \ge 3$. Puis $|v_{n+2}| = \left|\frac{v_{n+1} + v_n}{2(2 + v_{n+2})}\right| = \frac{|v_{n+1} + v_n|}{|2(2 + v_{n+2})|}$. Or par inégalité triangulaire, $|v_{n+1} + v_n| \le |v_n| + |v_{n+1}|$ et d'après ce qui précède, $\frac{1}{|2(2 + v_{n+2})|} \le \frac{1}{3}$. Finalement, $|v_{n+2}| \le \frac{|v_{n+1}| + |v_n|}{3} = \frac{1}{3}(|v_n| + |v_{n+1}|)$.
- d) Par définition de la suite (x_n) , on a $|v_0| = x_0$ donc $|v_0| \le x_0$ et de même $|v_1| \le x_1$. Supposons que pour un certain n, $|v_n| \le x_n$ et $|v_{n+1}| \le x_{n+1}$. Montrons que $|v_{n+2}| \le x_{n+2}$. Or d'après b), $|v_{n+2}| \le \frac{1}{3}(|v_{n+1}| + |v_n|) \le \frac{1}{3}(x_{n+1} + x_n)$ [par H.R.] $= x_{n+2}$ [déf de la suite (x_n)]. Conclusion.
- e) Pour tout $n \in \mathbb{N}$, $0 \le |v_n| \le x_n$ et d'après la question préliminaire, $\lim_{n \to +\infty} x_n = 0$. Donc (théorème d'encadrement), $\lim_{n \to +\infty} v_n = 0$. Donc (question 2.a)), $\lim_{n \to +\infty} u_n = 4$.

Exercice 4: Ecricome E 2002

- 1. A droite en -1, $x+1 \underset{x\to -1^+}{\longrightarrow} 0^+$. Alors $\ln(1+x) \underset{x\to -1^+}{\longrightarrow} -\infty$ et $\frac{1}{1+x} \underset{x\to -1^+}{\longrightarrow} +\infty$ d'où $\frac{x}{1+x} \underset{x\to -1^+}{\longrightarrow} -\infty$. Par somme, $h_n(x) = \underset{x\to -1^+}{\longrightarrow} -\infty$. Asymptote verticale d'équation x=-1.
- 2. En $+\infty$, $\frac{x}{1+x} = \frac{x}{x(1+1/x)} \underset{x \to +\infty}{\longrightarrow} 1$ donc par somme, $h_n(x) \underset{x \to +\infty}{\longrightarrow} +\infty$. Puis $\frac{h_n(x)}{x} = n \frac{\ln(1+x)}{x} + \frac{1}{x+1} \underset{x \to +\infty}{\longrightarrow} 0$ car $\frac{\ln(1+x)}{x} = \frac{\ln(x(1+1/x))}{x} = \frac{\ln(x)}{x} + \frac{\ln(1+1/x)}{x} \underset{x \to +\infty}{\longrightarrow} 0$ d'après les croissances comparées.
- 3. h_n est dérivable sur $]-1,+\infty[$ (comme somme quotient de fonctions usuelles dont le dénominateur ne s'y annule pas) et pour tout x>-1, $h'_n(x)=\frac{n}{1+x}+\frac{1+x-x}{(1+x)^2}=\frac{n}{1+x}+\frac{1}{(1+x)^2}>0$ car x>-1. Et $h_n(0)=0$. En particulier, signe de h_n : négative sur]-1,0], positive sur $[0,+\infty[$.
- 4. Bien utiliser toutes les questions précédentes $(1. \rightarrow 4.)$. Traduction de la 2. : la courbe sera "plate" vers $+\infty$.
- 5. (a) $f_1(x) = x \ln(1+x)$ donc est dérivable sur] $-1, +\infty$ [et $f_1'(x) = \ln(1+x) + \frac{x}{1+x} = h_1(x)$
 - (b) Donc f_1 est décroissante sur]-1,0[et croissante sur $]0,+\infty[$. Minimum en x=0 de valeur f(0)=0. Pas de FI pour les limites : $\lim_{x\to -1} f_1(x) = +\infty = \lim_{x\to +\infty} f_1(x)$ (donner un détail pour chaque!)
- 6. (a) f_n est dérivable sur $]-1,+\infty[$ et $f'_n(x)=nx^{n-1}\ln(1+x)+\frac{x^n}{1+x}=x^{n-1}\left(n\ln(1+x)+\frac{x}{1+x}\right)=x^{n-1}h_n(x)$
 - (b) Donc si n est pair, n-1 est impair donc x^{n-1} est négatif sur]-1,0], positif ensuite, comme h_n , donc par produit (faire tableau de signe), $f'_n \geq 0$ (même > 0 en dehors de 0). Limite en $-1: x_n \to (-1)^n = 1$ et $\ln(1+x) \to -\infty$ donc $\lim_{x \to -1} f_n(x) = -\infty$ et en $+\infty$, $f_n(x) \to +\infty$.
 - Si n impair, n-1 pair donc x^{n-1} positif sur $]-1,+\infty[$, et f'_n du signe de h_n . f_n décroissante sur]-1,0], croissante ensuite. $\lim_{x\to -1} f_n(x) = +\infty = \lim_{x\to +\infty} f_n(x)$