Révision 1

Soit F la fonction définie par $F(x) = \int_1^x \frac{e^t}{t} dt$.

- 1. Déterminer l'ensemble de définition \mathcal{D} de F et préciser le signe de F sur \mathcal{D} .
- 2. Justifier que F est dérivable sur \mathcal{D} et dresser son tableau de variations.
- 3. Calculer la limite en 0.
- 4. Etudier le signe de $F(x) \ln x$ pour $x \ge 1$. En déduire la limite de F en $+\infty$.

Soit la fonction f définie sur \mathbb{R}^* par $f(x) = \int_x^{2x} \frac{dt}{\ln(1+t^2)}$.

- 1. Justifier que f est bien définie sur \mathbb{R}^* , et déterminer le signe de f sur \mathbb{R}^* .
- 2. Montrer que f est impaire.
- 3. Montrer que f est dérivable sur \mathbb{R}^* et calculer f'. Dresser alors le TV de f.
- 4. Calculer la limite de f en $+\infty$, puis en $-\infty$. Qu'en est-il en 0?

Révision 3

Soit la fonction g définie par $g: x \mapsto \int_0^x \sqrt{x^2 + t^2} dt$.

- 1. Pourquoi les méthodes des 2 exercices précédents ne s'appliquent-elles plus ici pour trouver le TV de g?
- 2. Déterminer l'ensemble de définition \mathcal{D}_g de g.
- 3. **A l'aide d'un changement de variable, montrer que pour tout $x \in \mathbb{R}$, g(x) = cx|x|, avec $c = \int_0^1 \sqrt{1+y^2} dy$.
- 4. En déduire que g est continue sur \mathbb{R} puis dérivable sur \mathbb{R} .
- 5. Dresser le tableau de variations complet de g.

Exercice 1:

Nature des intégrales suivantes et en cas de convergence, calcul de la valeur :

$$\sin(t) \int_0^{+\infty} \sin(t) dt$$

b)
$$\int_{1}^{+\infty} \frac{\ln u}{u} du$$

$$c) \int_0^{\frac{\pi}{2}} \tan(x) \, dx$$

$$\mathrm{d} \int_0^{+\infty} \frac{t}{(t^2+2)^2} \mathrm{d} t$$

a)
$$\int_0^{+\infty} \sin(t)dt$$
 b) $\int_1^{+\infty} \frac{\ln u}{u} du$ c) $\int_0^{\frac{\pi}{2}} \tan(x) dx$ d) $\int_0^{+\infty} \frac{t}{(t^2+2)^2} dt$ e) $\int_1^{+\infty} \frac{1}{x(x+1)} dx$

$$f) \int_0^{+\infty} \frac{e^{-1/t}}{t^2} dt$$

$$g) \int_{-\infty}^{+\infty} \frac{1}{1+t^2} dt$$

h)**
$$\int_1^{+\infty} \frac{dt}{t(\ln t)^{\beta}}, \beta > 1$$

f)
$$\int_0^{+\infty} \frac{e^{-1/t}}{t^2} dt$$
 g) $\int_{-\infty}^{+\infty} \frac{1}{1+t^2} dt$ h)** $\int_1^{+\infty} \frac{dt}{t(\ln t)^{\beta}}, \ \beta > 1$ i) $e \int_0^{+\infty} (\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}}) dx$

Exercice 2:

Nature des intégrales suivantes : a) $\int_0^1 \frac{\sin t}{t} dt$ b) $\int_0^{\frac{\pi}{2}} \frac{1}{\sin t} dt$ c) $\int_1^{+\infty} \frac{\ln x}{x + e^{-x}} dx$ d) $\int_1^{+\infty} \frac{\sin x}{x^2} dx$ e) $\int_0^{+\infty} e^{-\sqrt{x}} dx$

a)
$$\int_0^1 \frac{\sin t}{t} dt$$

$$\mathbf{b}) \int_0^{\frac{\pi}{2}} \frac{1}{\sin t} dt$$

$$c) \int_{1}^{+\infty} \frac{\ln x}{x + e^{-x}} dx$$

$$\mathrm{d}) \int_{1}^{+\infty} \frac{\sin x}{x^2} dx$$

$$e$$
) $\int_{0}^{+\infty} e^{-\sqrt{x}} dx$

$$f) \int_0^1 \frac{y-1}{\ln y} dy$$

$$g) \int_0^1 \ln x dx$$

f)
$$\int_0^1 \frac{y-1}{\ln y} dy$$
 g) $\int_0^1 \ln x dx$ h) $\int_1^{+\infty} (\ln(u+1) - \ln u) du$ i) $\int_0^1 \frac{\sqrt{x}}{\ln(1-x)} dx$ j) $\int_0^1 \frac{1}{x(x-1)} dx$

$$i) \int_0^1 \frac{\sqrt{x}}{\ln(1-x)} dx$$

$$j) \int_0^1 \frac{1}{x(x-1)} dx$$

Exercice 3:

- 1. Montrer que $\int_1^{+\infty} \frac{\ln t}{t^2} dt$ converge et vaut 1.
- 2. Nature et calcul de $\int_0^1 t^\alpha \ln t \, dt$ pour $\alpha > -1.$

Exercice 4: *Changement de variables

1. A l'aide du changement de variable proposé, étudier les intégrales suivantes (convergence puis calcul) : a) $\int_0^{+\infty} \frac{\ln(t)}{1+t^2} dt \quad (y=\frac{1}{t})$ b) $\int_{-\infty}^{+\infty} e^{t-e^t} dt \quad (u=e^t)$ c) $\int_0^1 \frac{dx}{x+\sqrt{x}} \quad (t=\sqrt{x})$ d) $\int_1^{+\infty} \frac{(t-1)^n}{t^{n+2}} dt$ pour $n \in \mathbb{N}$ fixé $(y=\frac{1}{t})$

a)
$$\int_0^{+\infty} \frac{\ln(t)}{1+t^2} dt$$
 $(y = \frac{1}{t})$

b)
$$\int_{-\infty}^{+\infty} e^{t-e^t} dt$$
 $(u=e^t)$

c)
$$\int_0^1 \frac{dx}{x + \sqrt{x}} \qquad (t = \sqrt{x})$$

d)
$$\int_1^{+\infty} \frac{(t-1)^n}{t^{n+2}} dt$$
 pour $n \in \mathbb{N}$ fixé $(y = \frac{1}{t})$

- 2. (a) A l'aide du changement de variable $u=t^2,$ calculer $\int_1^x \frac{1}{t} \frac{1}{1+t^2} dt$ pour $x \geq 1$.
 - (b) En déduire que l'intégrale $\int_1^{+\infty} \frac{\arctan t}{t^2} dt$ converge et vaut $\frac{\pi}{4} + \frac{\ln 2}{2}$. On commencera par faire une intégration par parties ...

Exercice 5: pour aller plus loin

Soit $n \in \mathbb{N}$. Justifier l'existence de l'intégrale $I_n = \int_0^1 (x \ln x)^n dx$, puis à l'aide d'intégrations par parties successives, montrer que $I_n = \frac{(-1)^n n!}{(n+1)^{n+1}}$.

Exercice 6:

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{e^x}{(1+e^x)^2}$

- 1. Etudier la parité de f.
- 2. Justifier la convergence de l'intégrale $\int_0^{+\infty} \frac{e^x}{(1+e^x)^2} dx$ et préciser sa valeur.
- 3. Que peut-on en déduire sur $\int_{-\infty}^{+\infty} \frac{e^x}{(1+e^x)^2} dx$?

Exercice 7:

Calculer pour tout $x \ge 0$, $\int_{-x}^{x} \sin t \, dt$. Que peut-on en déduire sur $\int_{-\infty}^{+\infty} \sin t \, dt$?

Exercice 8:

- 1. Montrer que pour tout $x \in [1, +\infty[$, $\int_1^x \frac{\sin t}{t} dt = \cos(1) \frac{\cos x}{x} \int_1^x \frac{\cos t}{t^2} dt$
- 2. En déduire que l'intégrale $\int_1^{+\infty} \frac{\sin t}{t} dt$ converge.
- 3. Montrer que $\int_1^{+\infty} \frac{\cos(2t)}{2t} dt$ converge. On pourra s'inspirer des questions 1. et 2.
- 4. * Montrer alors que pour tout réel t, $|\sin t| \ge \sin^2 t$ puis que $|\sin t| \ge \frac{1}{2}(1 \cos(2t))$.
- 5. En déduire que $\int_1^{+\infty} \frac{\sin t}{t} dt$ ne converge pas absolument.

Exercice 9:

On pose pour tout $n \in \mathbb{N}$, $I_n = \int_0^{+\infty} x^n e^{-x} dx$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'intégrale I_n converge.
- 2. Calculer I_0 et I_1 .
- 3. Trouver une relation de récurrence entre I_{n+1} et I_n .
- 4. En déduire la valeur de I_n en fonction de n.
- 5. En déduire la convergence de l'intégrale $J_n = \int_0^{+\infty} x^n e^{-2x} dx$ et préciser sa valeur.

Exercice 10:

On pose pour tout $n \in \mathbb{N}$, $I_n = \int_{-\infty}^{+\infty} \frac{1}{(1+x^2)^{n+1}} dx$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'intégrale I_n converge.
- 2. Calculer I_0 .
- 3. Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante. En déduire qu'elle converge.
- 4. Montrer que pour tout $n \in \mathbb{N}$, $I_n = 2(n+1)(I_n I_{n+1})$.
- 5. En déduire que pour tout $n \in \mathbb{N}$, $I_n = \frac{(2n)!}{2^{2n} \times (n!)^2} \pi$.

Exercice 11: Bilan : inspiré d'Edhec E 2004

Le but est de montrer que la limite quand $n \to +\infty$ de $\lim_{n \to +\infty} \int_0^{+\infty} \frac{1}{1+t+t^n} dt$ existe et de la calculer.

Soit pour tout $n \in \mathbb{N}$, $u_n = \int_0^1 \frac{1}{1+t+t^n} dt$ et $v_n = \int_1^{+\infty} \frac{1}{1+t+t^n} dt$.

- 1. Pour tout n de \mathbb{N} , justifier l'existence de u_n , puis calculer u_0 et u_1 .
- 2. Montrer que la suite (u_n) est convergente.
- 3. (a) * Montrer que : $\forall n \in \mathbb{N}, 0 \le \ln(2) u_n \le \frac{1}{n+1}$
 - (b) Donner la limite de la suite (u_n)
- 4. (a) Justifier la convergence de l'intégrale définissant v_n pour tout $n \geq 2$.
 - (b) Montrer que : $\forall n \geq 2, \ 0 \leq v_n \leq \frac{1}{n-1}$ puis conclure.

Exercice 12:

On pose pour x réel strictement positif $f(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t} dt$.

- 1. Montrer que f est bien définie sur \mathbb{R}_+^* .
- 2. Etudier le sens de variation de f.
- 3. Déterminer la limite de f en $+\infty$.

Exercice 13: La fonction Gamma

Pour tout $x \in \mathbb{R}_+^*$, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- 1. Justifier que l'intégrale $\Gamma(x)$ est convergente pour tout x > 0.
- 2. Calculer $\Gamma(1)$.
- 3. Justifier que pour tout x > 0, $\Gamma(x+1) = x\Gamma(x)$.
- 4. En déduire que pour tout $n \in \mathbb{N}^*$, $\Gamma(n) = (n-1)!$.

Exercice 14: pour s'entrainer On pose pour x réel : $f(x) = \int_0^{+\infty} \frac{\ln t}{x+t^2} dt$.

- 1. Montrer que pour tout x > 0, f(x) existe bien.
- 2. * f est-elle définie en 0?
- 3. A l'aide du changement de variable $y = \frac{1}{t}$, calculer f(1).

Exercice 15: pour aller plus loin

On définit la fonction f par $f(x) = \int_x^{+\infty} \frac{e^{-t}}{t} dt$.

- 1. Montrer que f est définie sur \mathbb{R}_+^* .
- 2. Montrer que f est continue et dérivable sur \mathbb{R}_+^* , et dresser son tableau de variations.
- 3. f se prolonge-t-elle par continuité en 0?
- 4. Montrer que pour tout $t \ge 1$, $0 \le \frac{e^{-t}}{t} \le e^{-t}$. En déduire la limite de f en $+\infty$.
- 5. ** A l'aide d'une intégration par parties, montrer que f(x) est équivalent à $\frac{e^{-x}}{x}$ en $+\infty$.

Exercice 16: pour aller plus loin

Pour tout $x \in]1, +\infty[$, on pose $F(x) = \int_1^x \frac{t}{\sqrt{t^3-1}} dt$.

- 1. ** Montrer que F est bien définie sur $]1, +\infty[$.
- 2. Montrer que F est dérivable sur $]1, +\infty[$ et déterminer F'.
- 3. Etudier la limite de F en $+\infty$.

Exercice 17:

- 1. On pose pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 t^n \ln(t) dt$. Montrer que l'intégrale I_n converge et calculer sa valeur.
- 2. Montrer que l'intégrale $I = \int_0^1 \frac{\ln(t)}{1-t} dt$ est convergente. Est-elle absolument convergente? Dans la suite de l'exercice, on admettra que pour tout $n \in \mathbb{N}$, l'intégrale $\int_0^1 \frac{t^n \ln(t)}{1-t} dt$ converge absolument.
- 3. (a) Montrer que pour tout $t \in]0,1[$, et $n \in \mathbb{N}: \frac{1}{1-t} \sum_{k=0}^{n} t^k = \frac{t^{n+1}}{1-t}.$
 - (b) Montrer alors que $\int_0^1 \frac{\ln(t)}{1-t} dt + \sum_{k=0}^n \frac{1}{(1+k)^2} = \int_0^1 \frac{t^{n+1}}{1-t} \ln(t) dt$.
 - (c) En déduire qu'il existe une fonction f, prolongeable par continuité sur [0,1] telle que :

$$\left|I + \sum_{k=0}^{n} \frac{1}{(1+k)^2}\right| \le \int_{0}^{1} |f(t)| t^{n} dt.$$

- (d) Montrer qu'il existe un réel M tel que $\int_0^1 |f(t)| t^n dt \leq \frac{M}{n+1}$.
- (e) En déduire que la série $\sum_{k\geq 1}\frac{1}{k^2}$ converge et exprimer sa somme en fonction de I.

Exercice 18:

Montrer que pour toutes les fonctions f suivantes, l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ converge et vaut 1. Déterminer alors $F: x \mapsto \int_{-\infty}^{x} f(t)dt$ pour tout réel x, dans chacun des cas.

$$f_{1}(x) = \begin{cases} \cos x & \text{si } x \in [0, \frac{\pi}{2}] \\ 0 & \text{sinon} \end{cases} \qquad f_{2}(x) = \begin{cases} 1 + x & \text{si } x \in [-1, 0] \\ 1 - x & \text{si } x \in [0, 1] \\ 0 & \text{sinon} \end{cases} \qquad f_{3}(x) = \begin{cases} \frac{1}{|x|^{3}} & \text{si } |x| \ge 1 \\ 0 & \text{sinon} \end{cases}$$

$$f_{4}(x) = \begin{cases} e^{x} & \text{si } x < 0 \\ 0 & \text{sinon} \end{cases} \qquad f_{5}(x) = \begin{cases} e^{-|x|} & \text{si } -\ln 2 \le x \le \ln 2 \\ 0 & \text{sinon} \end{cases} \qquad f_{6}(x) = \begin{cases} \frac{1}{2x^{2}} & \text{si } |x| \ge 1 \\ 0 & \text{sinon} \end{cases}$$

$$f_{7}(x) = \frac{e^{x}}{(e^{x} + 1)^{2}} \text{ pour } x \in \mathbb{R} \qquad f_{8}(x) = \begin{cases} \ln x & \text{si } x \in [1, e] \\ 0 & \text{sinon} \end{cases}$$