Exercice 1:

Etudier les limites des fonctions suivantes au point considéré. Lorsque c'est possible, on essaiera plusieurs rédactions (avec et sans les équivalents).

a)
$$\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$
 en 0 b) $\frac{\sqrt{x^2-3x+2}}{x}$ en $-\infty$ c) $x+\sqrt{x^2-3x+2}$ en $\pm\infty$

d)
$$x|x| - x^2 + x$$
 en $\pm \infty$ e) $\frac{x^2 + 2|x|}{x}$ en 0 et $-\infty$ f) $(1+x)^{1/x}$ en 0 g) $(1+x)^{\ln x}$ en 0^+

h)
$$\frac{\ln(\sqrt{x})}{x^{1/3}}$$
 en 0 et $+\infty$ i) $\frac{\ln(1+x)(1+\frac{x}{2})}{x}$ en 0 j) $\frac{\ln(1+x)}{x^2}$ en 0+ k) $\frac{\ln(1+x^2)}{x}$ en 0+ et $+\infty$

l)
$$\frac{e^x - 1}{\ln(1+x)}$$
 en 0 m) $\frac{\sqrt{x}}{e^x - 1}$ en 0 et $+\infty$ n) $xe^{1/x} - x$ en $+\infty$ o) $\ln\left(\frac{e^x - 1}{x}\right)$ en $+\infty$

$$\lim_{x \to \infty} (1+x)$$
 $e^{-x} = 1$ $(x \to 0)$ $(x$

Exercice 2:

Soient les 8 fonctions suivantes :

$$f_1(x) = x^2$$
, $f_2(x) = e^x$, $f_3(x) = e^{-x}$, $f_4(x) = 5^x$, $f_5(x) = \ln x$, $f_6(x) = x^{10}$, $f_7(x) = (\ln x)^{20}$, $f_8(x) = \frac{1}{x}$.

1. Comparer ces fonctions au sens de la négligeabilité au voisinage de $+\infty$.

2. Comparer ces mêmes fonctions au sens de la négligeabilité au voisinage de 0⁺.

3. Trouver un équivalent en $+\infty$ de chacune des fonctions g suivantes

$$g_1(x) = x^2 - (\ln x)^{20} \qquad g_2(x) = \sqrt{x} + 2 + e^{-x} + \ln x + x^2 \qquad g_3(x) = \frac{x^2 + \sqrt{x^3 - 1}}{x^3 + \ln x}$$

$$g_4(x) = x + 2\sin x \qquad g_5(x) = \frac{x^2 + 3}{e^{-x}(\ln x)^{20} + 1}$$

Exercice 3:

Etudier les limites des fonctions suivantes au point considéré :

a)
$$x^3 \lfloor x \rfloor$$
 en 0 (attention la fonction est définie en 0) b) $\frac{\lfloor x \rfloor}{x}$ en 0 et $+\infty$ c) $\sin x \cos \left(\frac{1}{x}\right)$ en 0 d) $\sin \left(\frac{1}{x}\right) e^{\cos x}$ en $+\infty$ e) $x(2 + \sin x)$ en $+\infty$

Exercice 4: pour aller plus loin

Soit la fonction f définie sur \mathbb{R}^* par $f(x) = x \left| \frac{1}{x} \right|$.

1. Exprimer f(x) pour x > 1. En déduire la limite de f en $+\infty$. Et en $-\infty$?

2. a) Encadrer f(x) pour x > 0. En déduire que f admet une limite à droite en 0.

b) La fonction se prolonge-t-elle par continuité en 0?

Exercice 5:

Soit f une fonction telle qu'au voisinage de $+\infty$, on ait : $x^2 - \ln(x) \le f(x) \le x^2 + 3x$. Déterminer un équivalent de f en $+\infty$.

Exercice 6:

On définit la fonction suivante : f : \mathbb{R}^* $x \longmapsto \begin{cases} x^x & \text{si } x > 0 \\ \frac{xe^x}{1 - e^x} & \text{si } x < 0 \end{cases}$

Peut-elle être prolongée par continuité en 0?

Même question avec les fonctions suivantes au point x_0 (on commencera par préciser leur ensemble de définition):

1.
$$f(x) = \frac{x}{\sqrt{x^2 + x + 1} - 1}$$
, en $x_0 = 0$

et pour s'entraîner :

2.
$$f(x) = \frac{|x|}{x}$$
, en $x_0 = 0$
3. $f(x) = \frac{\cos x}{2x - \pi}$, en $x_0 = \frac{\pi}{2}$.

3.
$$f(x) = \frac{\cos x}{2x - \pi}$$
, en $x_0 = \frac{\pi}{2}$.

Exercice 7:

- 1. Soit la fonction f définie par $f(x) = \begin{cases} 1 & \text{si } x \leq 1 \\ x^{\ln(\ln x)} & \text{si } x > 1 \end{cases}$.
 - a) Justifier que f est bien définie sur \mathbb{R} , puis préciser la valeur f(1).
 - b) Montrer que f est continue au point 1.
- 2. Mêmes questions avec la fonction $f(x) = \begin{cases} (x-1)e^{\frac{1}{x-1}} & \text{si } x < 1 \\ 0 & \text{si } x \ge 1 \end{cases}$

Exercice 8:

- 1. Soit f la fonction définie sur \mathbb{R}_+^* par $f(x)=x^2\ln(1+\frac{1}{x})$. Montrer que $f(x)-x\underset{x\to+\infty}{\longrightarrow}-\frac{1}{2}$. (On admettra que $\ln(1+u)-u\underset{u\to0}{\sim}\frac{-u^2}{2}$.) Qu'en déduit-on sur l'allure de la courbe au voisinage de $+\infty$?
- 2. Soit f la fonction définie par $f(x) = x^{1+\frac{1}{x}}$. Déterminer son ensemble de définition puis montrer que $f(x) x \xrightarrow[x \to +\infty]{} +\infty$. Qu'en déduit-on sur l'allure de la courbe au voisinage de $+\infty$?

Exercice 9:

Déterminer le domaine de définition des fonctions f suivantes puis leur comportement asymptotique aux bornes de leur domaine de définition. En déduire l'allure de C_f au voisinage des infinis.

a) $f(x) = \ln(1 + e^x + e^{2x})$: commencer par une étude à la main en $\pm \infty$, puis montrer que la droite d'équation y = 2x est aymptote à C_f en $+\infty$.

et pour s'entraîner :

- b) $f(x) = (x + \ln x)e^{1/x}$: pour l'étude en $+\infty$, déterminer la limite de f(x), f(x)/x puis f(x) x en $+\infty$. Interprétation graphique?
- c) $f(x) = x + \sqrt{x^2 1}$: pour l'étude en $+\infty$, commencer par une étude à la main, puis montrer que la droite d'équation y = 2x est asymptote à C_f en $+\infty$. Qu'en est-il en $-\infty$?

Exercice 10: pour s'entraîner et réviser le calcul sur les fonctions

Soit f la fonction définie par $f(x) = \frac{\ln x}{(1+x)^2}$.

- 1. Donner l'ensemble de définition de f, que l'on notera \mathcal{D} .
- 2. Préciser le signe de f sur \mathcal{D} , ainsi que les limites aux bornes de \mathcal{D} .
- 3. Justifier la dérivabilité de f sur \mathcal{D} et déterminer la fonction u telle que $\forall x \in \mathcal{D}, f'(x) = \frac{u(x)}{x(1+x)^3}$.
- 4. Dresser le tableau de variations complet de u.
- 5. Montrer que la fonction u s'annule en un unique point sur \mathcal{D} , que l'on notera α .
- 6. Dresser le tableau de variations complet de f (en fonction de α).

Exercice 11: Pour s'entraîner sur les limites et réviser les suites

On considère la fonction f définie sur $]0, +\infty[$ par $f(x) = \begin{cases} 1 & \text{si } x = 1 \\ \frac{1}{2} \frac{(x+1)\ln(x)}{x-1} & \text{si } x \neq 1 \end{cases}$

- 1. Déterminer le signe de f sur $]0, +\infty[$.
- 2. Montrer que f est continue en 1. f se prolonge-t-elle par continuité en 0?
- 3. Calculer la dérivée f' de f sur les intervalles]0,1[et $]1,+\infty[$.
- 4. Soit g la fonction $g(x) = x \frac{1}{x} 2\ln(x)$ définie sur $]0, +\infty[$.
 - (a) Déterminer les limites de g en 0 et $+\infty$.
 - (b) Dresser le tableau de variations complet de la fonction g sur $]0, +\infty[$.
 - (c) Préciser le signe de g sur $]0, +\infty[$.
- 5. En déduire le tableau de variations complet de f.
- 6. Déterminer la limite de $\frac{f(x)}{x}$ quand x tend vers $+\infty$.
- 7. Montrer que, pour tout x > 1, on a $\ln(x) < x 1$. En déduire que, pour tout x > 1, on a f(x) < x.
- 8. Donner la représentation graphique de la fonction f avec sur le même graphique la droite d'équation y = x.
- 9. Soit la suite u définie sur \mathbb{N} par $u_0 = a > 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - (a) Montrer que la suite u est bien définie et que pour tout $n \in \mathbb{N}$, $u_n > 1$.
 - (b) Déterminer la monotonie de la suite u.
 - (c) En déduire que la suite u converge et déterminer sa limite.